Abstract:In the context of high-quality development of the digital economy, improving the quality and efficiency of data factor flow is a key part of promoting new quality productivity of enterprises in the new era. This paper takes the construction of the data factor market platform as a quasi-natural experiment to empirically test the impact of data factor market construction on the new quality productivity of A-share listed firms in China’s Shanghai and Shenzhen cities, the mechanism, and the change of the effect under the synergy of policies. The empirical results find that data factor market construction can effectively enhance firms’ new quality productivity. The heterogeneity test finds that data factor market construction has a more significant new quality productivity-driving effect on firms with high environmental uncertainty, digital transformation, and growth and maturity. The mechanism study finds that optimizing information quality, reducing inefficient investment and enhancing internal control capabilities are the specific channel mechanisms through which data factor market construction empowers enterprises’ new productivity. Policy synergy research finds that data factor market construction and science and technology financial reform pilot policies, in synergy, can give enterprises greater acceleration of new quality productivity enhancement. Government departments should put more effort into supporting localities to implement differentiated data factor-enabling policies based on their factor endowments, accelerate the construction of big data infrastructures, and fully promote the synergies of multiple policies to enhance the driving effect of data factor market construction on enterprises’ new productivity.
王娟. 以“数”赋能:数据要素市场建设影响企业新质生产力的机制、渠道及效应[J]. 《深圳大学学报》(人文社科版), 2025, 42(2): 80-92.
WANG Juan. Empowering with Data: The Effect of Data Factor Market Building on the New Quality Productivity of Enterprises. , 2025, 42(2): 80-92.
[1] 赵超,曾庆铎.国家级大数据综合试验区如何影响制造业企业高质量发展:基于资源配置效率视角[J].深圳大学学报(人文社会科学版),2024,41(5):71-83. [2] 邱子迅,周亚虹.数字经济发展与地区全要素生产率——基于国家级大数据综合试验区的分析[J].财经研究,2021,47(7):4-17. [3] 杨俊,李小明,黄守军.大数据、技术进步与经济增长——大数据作为生产要素的一个内生增长理论[J].经济研究,2022,57(4):103-119. [4] 赵放,蒋国梁,马婉莹.数据要素市场赋能数字产业创新——来自准自然实验的证据[J].经济评论,2024,(3):109-125. [5] Mokyr J.The Past and the Future of Innovation: Some Lessons from Economic History[J].Explorations in Econo-mic History,2018,(69):13-26. [6] 戚聿东,蔡呈伟.数字化对制造业企业绩效的多重影响及其机理研究[J].学习与探索,2020,(7):108-119. [7] Farboodi M, Mihet R, Philippon T, et al.Big Data and Firm Dynamics[J].AEA Papers and Proceedings,2019,(109):38-42. [8] 刘禹君. 数据要素市场赋能城市绿色创新发展——来自中国城市的经验证据[J].贵州社会科学,2023,(1):124-133. [9] 焦勇,高月鹏.数据要素赋能新质生产力涌现:供给创新与需求牵引的解释[J].新疆社会科学,2024,(4):38-51+173. [10] Dalenogare L S, Benitez G B, Ayala N F, et al.The Expected Contribution of Industry 4.0 Technologies for Industrial Performance[J].International Journal of Produ-ction Economics,2018,204(10):383-394. [11] 赵胜民,张博超.分析师关注如何影响公司投资行为——基于不同投资类型的分析[J].中央财经大学学报,2021, (5):51-64. [12] 张云,尹艺霏.数字化转型、公司治理模式与企业全要素生产率[J].郑州大学学报(哲学社会科学版),2023,56(5):53-58. [13] Obashi A, KimuraI F.New Developments in International Production Networks:Impact of Digital Technologies[J].Asian Economic Journal,2021,30(8):1326-1345. [14] 方红星,林婷.机构投资者实地调研如何影响公司非效率投资——基于代理冲突和信息不对称的机制检验[J].经济管理,2023,45(2):117-134. [15] 田丹,吕文栋,刘凯丽.内部控制对创新风险的作用机制——基于风险缓和模型的研究[J].财贸经济,2022,43(5):129-144. [16] Wamba S F, Akter S, Edwards A, et al.How Big Data Can Make Big Impact:Findings from A Systematic Review and A Longitudinal Case Study[J].International Journal of Production Economics,2015,165(7):234-246. [17] Urbinati A, Chiaroni D, Chiesa V, et al.The Role of Digital Technologies in Open Innovation Processes:An Exploratory Multiple Case Study Analysis[J].R&D Man-agement,2020,50(1):136-160. [18] Gordon L A, Wilford A L.An Analysis of Multiple Consecutive Years of Material Weaknesses in Internal Control[J].The Accounting Review,2012,87(6):2027-2060. [19] 陈文,常琦.大数据赋能了企业绿色创新吗——基于国家级大数据综合试验区的准自然实验[J].财经科学,2022,(8):76-92. [20] 李珊,张文德,郑伟鑫.中国数据要素市场产权配置改革评价机制构建与实证研究[J].中国软科学,2024,(1):151-163. [21] 王贤彬,邹欢.科技金融驱动地区创新——基于“促进科技和金融结合试点”的自然实验[J].产业经济评论,2024,(2):26-43. [22] 吕岩威,李禹陶.科技金融赋能经济高质量发展了吗——基于创新动机视角的研究[J].科学学研究,2024,42(5):964-976. [23] 马凌远,李晓敏.科技金融政策促进了地区创新水平提升吗?——基于“促进科技和金融结合试点”的准自然实验[J].中国软科学,2019,(12):30-42. [24] 郑石明,伍以加,邹克.科技和金融结合试点政策有效吗? ——基于双重差分法的研究[J].中国软科学,2020,(1):49-58. [25] Meuleman M, De Maeseneire W.Do R&D Subsidies Affect SMEs’ Access to External Financing?[J].Research Policy,2012,41(3):580-591. [26] 徐子尧,申程程,张雪兰,等.中国上市企业新质生产力指数编制暨发展报告(2011-2022年)[J].金融经济学研究,2025,40(3):3-18. [27] 陈启斐,田真真.大数据与产业赋能——基于国家级大数据试验区的分析[J].南开经济研究,2023,(7):90-107. [28] 李泽宇,王雪方,陈新芳.政府数据开放对企业创新的影响效应及机制研究[J].科研管理,2024,45(7):11-20. [29] 何雨可,牛耕,逯建,等.数字治理与城市创业活力——来自“信息惠民国家试点”政策的证据[J].数量经济技术经济研究,2024,41(1):47-66. [30] 林钟高,郑军,卜继栓.环境不确定性、多元化经营与资本成本[J].会计研究,2015,(2):36-43+93. [31] 吴非,胡慧芷,林慧妍,等.企业数字化转型与资本市场表现——来自股票流动性的经验证据[J].管理世界,2021, 37(7):130-144+10. [32] 刘诗源,林志帆,冷志鹏.税收激励提高企业创新水平了吗?——基于企业生命周期理论的检验[J].经济研究,2020,55(6):105-121. [33] 阮睿,孙宇辰,唐悦,等.资本市场开放能否提高企业信息披露质量?——基于“沪港通”和年报文本挖掘的分析[J].金融研究,2021,(2):188-206. [34] Richardson S.Over-Investment of Free Cash Flow[J]. Review of Accounting Studies,2006,11(2-3):159-189. [35] 中国上市公司内部控制指数研究课题组,王宏,蒋占华,等.中国上市公司内部控制指数研究[J].会计研究,2011,(12):20-24+96.