Data Trading Platform Construction Empowers New Quality Productivity Development: Theoretical Logic and Mechanism Effects
CHEN Jian-xing1, JI Qiang2
1. School of Credit Management, Guangdong University of Finance, Guangzhou, Guangdong, 510632; 2. Research Institute of Shanghai Data Exchange, Shanghai, 201203
Abstract:If data cannot be fully circulated as a new production factor, it will lead to inefficient regional resource allocation and seriously restrict improving new quality productivity. Using the exogenous shock of data trading platform construction and data at the prefecture-level city level, this paper studies whether the flow of data elements brought about by the construction of data trading platforms can improve new quality productivity. The empirical results show that the data trading platform significantly improves the new quality productivity at the prefecture-level city level. The impact of data trading platform construction on new quality productivity in the eastern region, the southern region, and regions with high industrial structure and high human capital is more significant. It improves new quality productivity by reducing the degree of resource mismatch between regions, increasing the number of scientific research and technology practitioners, and improving the regional labor structure. The most direct role of the establishment of a data trading platform is to break the transaction barriers between data in different enterprises or regions, reduce the circulation cost and information asymmetry of data, and promote the circulation and transaction of data elements. By accelerating the digital transformation of enterprises, data trading platforms help guide the optimal allocation of capital and labor factors, thereby improving resource mismatch at the city level. Therefore, it is necessary to actively promote the transfer of over-the-counter data transactions to on-site transactions, establish a unified and authoritative data trading standard system, cultivate a national integrated data market, continuously deepen the functions and influence of data trading platforms, and give full play to their boosting effect on the development of new quality productivity.
[1] Jones C I, Tonetti C.Nonrivalry and the Economics of Data[J].American Economic Review,2020,110(9): 2819-2858. [2] 戴魁早,王思曼,黄姿.数据交易平台建设如何影响企业全要素生产率[J].经济学动态,2023,(12):58-75. [3] Akcigit U, Liu Q.The Role of Information in Innovation and Competition[J].Journal of the European Economic Associa-tion,2016,14(4):828-870. [4] 米加宁,吴佳正,董昌其.数据生产要素驱动新质生产力跃升的机理与规律研究——基于马克思主义政治经济学视角[J].郑州大学学报(哲学社会科学版),2024,57(4):1-9+143. [5] 韩文龙,张瑞生,赵峰.新质生产力水平测算与中国经济增长新动能[J].数量经济技术经济研究,2024,41(6):5-25. [6] 王珏,王荣基.新质生产力:指标构建与时空演进[J].西安财经大学学报,2024,37(1):31-47. [7] 刘伟. 科学认识与切实发展新质生产力[J].经济研究,2024, 59(3):4-11. [8] 任保平. 生产力现代化转型形成新质生产力的逻辑[J].经济研究,2024,59(3):12-19. [9] 方敏,杨虎涛.政治经济学视域下的新质生产力及其形成发展[J].经济研究,2024,59(3):20-28. [10] 孟捷,韩文龙.新质生产力论:一个历史唯物主义的阐释[J].经济研究,2024,59(3):29-33. [11] 朱富显,李瑞雪,徐晓莉,等.中国新质生产力指标构建与时空演进[J].工业技术经济,2024,43(3):44-53. [12] 寇宗来,孙瑞.技术断供与自主创新激励纵向结构的视角[J].经济研究,2023,58(2):57-73. [13] 黄永春,宫尚俊,邹晨,等.数字经济、要素配置效率与城乡融合发展[J].中国人口·资源与环境,2022,32(10):77-87. [14] Goodman-Bacon A.Difference-in-differences with Varia-tion in Treatment Timing[J].Journal of Econometrics,2021, 225(2):254-277. [15] Sun L, Abraham S.Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects[J].Journal of Econometrics,2021,225(2):175-199. [16] 冯永琦,林凰锋.数据要素赋能新质生产力:理论逻辑与实践路径[J].经济学家,2024,(5):15-24. [17] Beck T, Levine R, Levkov A.Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States[J].The Journal of Finance,2010,65(5):1637-1667. [18] 王军,朱杰,罗茜.中国数字经济发展水平及演变测度[J].数量经济技术经济研究,2021,38(7):26-42. [19] 魏下海,张沛康,杜宇洪.机器人如何重塑城市劳动力市场:移民工作任务的视角[J].经济学动态,2020,(10):92-109. [20] 陈诗一,张建鹏,刘朝良.环境规制、融资约束与企业污染减排——来自排污费标准调整的证据[J].金融研究,2021,(9):51-71. [21] 苑泽明,于翔,李萌.数据资产信息披露、机构投资者异质性与企业价值[J].现代财经(天津财经大学学报),2022,42(11):32-47. [22] Liu Y, Mao J.How Do Tax Incentives Affect Investment and Productivity? Firm-level Evidence from China[J].American Economic Journal:Economic Policy,2019,11(3):261-291. [23] De Chaisemartin C, D’Haultfoeuille X.Two-way Fixed Effects Estimators with Heterogeneous Treatment Effects[J].American Economic Review,2020,110(9):2964-2996. [24] 白俊红,张艺璇,卞元超.创新驱动政策是否提升城市创业活跃度——来自国家创新型城市试点政策的经验证据[J].中国工业经济,2022(6):61-78. [25] 刘传明,马青山.网络基础设施建设对全要素生产率增长的影响研究——基于“宽带中国”试点政策的准自然实验[J].中国人口科学,2020(3):75-88+127-128. [26] Hsieh C T, Klenow P J.Misallocation and Manufacturing TFP in China and India[J].The Quarterly Journal of Econ-omics,2009,124(4):1403-1448. [27] 刘诚,夏杰长.线上市场、数字平台与资源配置效率:价格机制与数据机制的作用[J].中国工业经济,2023,(7):84-102.