|
|
The Market Logic of Linkage and Transmission of Housing Prices in Core Cities of the Guangdong-Hong Kong-Macao Greater Bay Area |
GUO Wen-wei |
College of Finance, Guangdong University of Finance and Economics, Guangzhou, Guangdong, 510320 |
|
|
Abstract With the four core cities in Guangdong-Hong Kong-Macao Greater Bay Area as the subjects, this paper first takes the dynamic conditional correlation coefficient (DCC) to measure the linkage of housing prices in these cities during 2011-2018, and then uses R-Vine Copula model and Granger causality approach to analyze the dependence structure and fluctuation transmission mechanism of the housing prices among the cities. The price linkage between Guangzhou and Shenzhen is high, which shows a W-shaped trend and is deeply affected by the regulatory policies and there is a causal relationship between the two. There is a certain interaction between housing prices in Hong Kong and Macao, and Macau is a one-way Granger reason for the price fluctuation in Hong Kong. The linkage between housing prices in Macau and Guangzhou and Shenzhen is relatively weak. There is a chain-dependent structure among the four cities, in which Guangzhou and Hong Kong act as intermediaries, but there is a clear regional segmentation between the real estate markets of Hong Kong and Macao and those of Guangzhou and Shenzhen, and there is no obvious fluctuation transmission effect between the two regions.
|
Received: 25 July 2018
|
|
|
|
|
[1] 左夏伟,谢昌浩.“泛珠三角”地区的房地产市场分析[J].经济问题探索,2006,(11):147-149. [2] 中国人民银行佛山市中心支行课题组.房地产市场泡沫测度 :珠三角实证[J].南方金融,2009,(10):20-24. [3] 陈章喜,黄准.珠三角经济区房地产价格互动关系研究——以广州、深圳、东莞为例[J].南方金融,2010,(4):82-86. [4] 陈英楠,陈建.中国城市房价周期波动特征—以北京、上海、广州与深圳为例[J].世界经济文汇,2012,(5):66-81. [5] 杨元梅,谭术魁.珠三角一小时城市圈房地产价格影响因素对房价及其波动的影响程度研究[J].中国土地科学,2011,25(6):54-59. [6] 曾晖. 基于GARCH 模型的珠三角区域城市住宅价格波动研究[J].五邑大学学报(自然科学版),2016,30(2):20-27. [7] 黄晓慧,邹开敏.“一带一路”战略背景下的粤港澳大湾区文商旅融合发展[J].华南师范大学学报(社会科学版),2016,(4):106-111. [8] 陈朝萌. 粤港澳大湾区港口群定位格局实证分析[J].深圳大学学报(人文社会科学版),2016,33(4):32-36. [9] 申勇,马忠新.构筑湾区经济引领的对外开放新格局 ——基于粤港澳大湾区开放度的实证分析[J].上海行政学院学报,2017,18(1):83-91. [10] 纪春礼,曾忠禄.基于智慧专业化理论的粤港澳大湾区创新发展战略研究[J].深圳大学学报(人文社会科学版), 2018,35(5):31-38. [11] 陈相. 粤港澳大湾区财政科研经费的制度特征及跨境使用路径[J].深圳大学学报(人文社会科学版),2018,35(5):39-46. [12] ISMAIL S.Spatial autocorrelation and real estate studies: a literature review[J].Malaysian Journal of Real Estate,2006,,1(1):1-13. [13] KIM J, GOLDSMITH P.A spatial hedonic approach to access the impact of swine production on residential property values[J].Environmental and Resource Economics,2009,42(4):509-534. [14] 王春艳,吴老二.人口迁移,城市圈与房地产价格——基于空间计量学的研究[J].人口与经济,2008,(4):63-67. [15] 龙莹. 空间异质性与区域房地产价格波动的差异——基于地理加权回归的实证研究[J].中央财经大学学报,2010,(11):24-51. [16] 骆永民. 城市化对房价的影响:线性还是非线性?——基于四种面板数据回归模型的实证分析[J].财经研究,2011,(4):135-144. [17] 王鹤. 基于空间计量的房地产价格影响因素分析[J].经济评论,2012,(1):48-56. [18] 丁如曦,倪鹏飞. 中国城市住房价格波动的区域空间关联与溢出效应[J].财贸经济,2015,(6):136-150. [19] 董纪昌,张欣,周克成,李秀婷. 基于空间计量的我国房地产价格聚集与差异研究[J].系统工程理论与实践,2016,(4):875-883. [20] Bedford T, Cooke R M.Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines[J].Annals of Mathematics and Artificial Intelligence, 2001,32(1):245-268. [21] Diβmanna J, Brechmann E C, Czado C.Selecting and Estimating Regular Vine Copulae and Application to Financial Returns[J]. Computational Statistics & Data Analysis, 2013, 59(1):52-69. [22] 郭文伟. 全球股市泡沫测度及其相依结构分析[J].广东财经大学学报,2016,(4):61-71. |
|
|
|