|
|
Algorithms-embedded Public Credit Evaluation:Internal Logic, Risk Review and Regulation Approaches |
ZHANG Tao |
School of Law, Tsinghua University, Beijing, 100084 |
|
|
Abstract Public credit evaluation is the core system of credit supervision. With the iteration of algorithm technology, its advantages in public credit evaluation are becoming increasingly obvious. The intelligent fusion of “data + algorithms” is the technical logic of algorithms-embedded public credit evaluation. Promoting the modernization of government governance and improving social credit is respectively the practical logic and value logic of algorithms-embedded public credit evaluation. However, while giving full play to the technical advantages, algorithm may also cause triple risks in public credit evaluation: technical risks(mainly including black box algorithms and data breach), legal risks(mainly including power abuse and data abuse), and ethical risks(mainly including algorithmic supremacy and algorithmic bias). In view of these risks, it is advisable to adopt a “holistic perspective” and a “process-based approach” in regulation. In the ex-ante stage, it is necessary to formulate technical standards for algorithmic credit evaluation, establish an algorithmic information disclosure system, and improve the algorithmic impact assessment system. When applying algorithm technology in public credit evaluation, it is necessary to use the principle of administrative rule of law to restrain administrative power, and use credit and personal information rights to check and balance algorithmic power. In the post-event stage, it is necessary to improve the public credit evaluation objection appeal system, and at the same time strengthen the algorithm audit and judicial review of public credit evaluation. In the ex post stage, it is necessary to improve the public credit evaluation objection appeal system, and at the same time strengthen the algorithm audit and judicial review of the public credit evaluation.
|
Received: 15 January 2022
|
|
|
|
|
[1] 陈泷. 公共信用信息大数据的应用路径探析[J].中国管理信息化,2020,(3):176-177. [2] Sahiba Chopra.Current Regulatory Challenges in Consumer Credit Scoring Using Alternative Data-Driven Methodologies[J].Vanderbilt Journal of Entertainment & Technology Law,2021,(3):625-648. [3] Danielle Keats Citron, Frank Pasquale.The Scored Society: Due Process for Automated Predictions[J].Washington Law Review,2014,(1):1-34. [4] Tal Z.Zarsky.Understanding Discrimination in the Scored Society[J].Washington Law Review,2014,(4):1375-1412. [5] 习近平. 推动我国新一代人工智能健康发展[J].中国信息安全,2018,(12):28-29. [6] (美)克里斯托弗·斯坦纳.算法帝国[M].李筱莹译.北京:人民邮电出版社,2014.42. [7] 柴彦威等. 中国城市的单位透视[M].南京:东南大学出版社,2016.85-86. [8] 欧树军. 国家基础能力的基础[M].北京:中国社会科学出版社,2013.39. [9] 王岚. 构建以信用为基础的新型监管机制的思考[J].天津经济,2020,(9):32-37. [10] 张捷.信用战:全球历史演进元规则[M].太原:山西人民出版社,2012.64. [11] 胡大武. 转型期中国社会信用危机及其治理研究[J].南京师大学报(社会科学版),2007,(2):39-46. [12] 王青斌. 社会诚信危机的治理:行政法视角的分析[J].中国法学,2012,(5):46-54. [13] 邢会强等. 智能投顾时代的崛起——智能投顾法律问题研究[M].北京:中国金融出版社,2019.308. [14] (美)弗兰克·帕斯奎尔.黑箱社会:控制金钱和信息的数据法则[M].赵亚男译.北京:中信出版社,2015.259. [15] Jenna Burrell.How the Machine “Thinks”: Understanding Opacity in Machine Learning Algorithms[J].Big Data & Society,2016,(3):1-12. [16] (加)雷蒙·安德森.信用评分工具:自动化信用管理的理论与实践[M].李志勇译.北京:中国金融出版社,2017.233. [17] (美)博登海默.法理学——法哲学及其方法[M].邓正来等译.北京:华夏出版社,1987.346. [18] 陈鹏. 算法的权力和权力的算法[J].探索,2019,(4):182-192. [19] Emily Berman.A Government of Laws and Not of Machines[J].Boston University Law Review,2018,(5):1277-1356. [20] 张涛. 自动化系统中算法偏见的法律规制[J].大连理工大学学报(社会科学版),2020,(4):92-102. [21] (荷)玛农·奥斯特芬.数据的边界:隐私与个人信息保护[M].曹博译.上海:上海人民出版社,2020.46. [22] B. F. Skinner.Beyond Freedom and Dignity[M].Cambridge:Hackett Publishing Company,2002.205. [23] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, Cass R.Sunstein. Discrimination in the Age of Algorithms[J]. Journal of Legal Analysis,2018,(10):113-174. [24] 王贵松. 风险行政的预防原则[J].比较法研究,2021,(1):49-61. [25] (英)罗伯特·鲍德温,马丁·凯夫,马丁·洛奇.牛津规制手册[M].宋华琳,李鸻,安永康等译.上海:上海三联书店,2017.115. [26] 关保英. 论行政法中技术标准的运用[J].中国法学,2017,(5):216-236. [27] 张涛. 大数据时代“通过设计保护数据”的元规制[J].大连理工大学学报(社会科学版),2021,(2):79-88. [28] 汪庆华. 算法透明的多重维度和算法问责[J].比较法研究,2020,(6):163-173. [29] 张涛. 个人信用评分的地方实践与法律控制——以福州等7个城市为分析样本[J].行政法学研究,2020,(1):116-129. [30] 刘东亮. 技术性正当程序:人工智能时代程序法和算法的双重变奏[J].比较法研究,2020,(5):64-79. [31] 黄薇. 中华人民共和国民法典人格权编解读[M].北京:中国法制出版社,2020.183-184. [32] 张欣. 算法解释权与算法治理路径研究[J].中外法学,2019,(6):1425-1445. [33] 王瑞雪. 论行政评级及其法律控制[J].法商研究,2018,(3):27-37. [34] 金新政,陈氢.信息管理概论[M].武汉:华中科技大学出版社,2002.218. |
|
|
|