The Impact of National Big Data Comprehensive Pilot Zones on the High-quality Development of Manufacturing Enterprises: From the Perspective of Resource Allocation Efficiency
ZHAO Chao1, ZENG Qing-duo2
1. Editorial Office of School Journal, Party School of the Guangdong Provincial Committee of CPC (Guangdong Institute of Public Administration), Guangzhou, Guangdong, 510053; 2. School of Economics, Key Laboratory of Digital Economy and Date Governance, Guangdong University of Technology, Guangzhou, Guangdong, 510520
Abstract:In the era of digital intelligence, big data has become an important engine driving the high-quality development of China's economy. Taking China's A-share listed manufacturing companies from 2010 to 2021 as samples, based on the perspective of resource allocation efficiency, by constructing a DID model, the impact of the establishment of a national big data comprehensive pilot zone on the high-quality development of manufacturing enterprises and its internal mechanism are systematically analyzed. The results show that the establishment of a national big data comprehensive pilot zone can significantly enhance the total factor productivity of manufacturing enterprises. This result remains valid after a series of robustness tests, including PSM-DID and parallel trend tests, indicating that the establishment of a national big data comprehensive pilot zone has promoted the high-quality development of manufacturing enterprises. Improving the resource allocation efficiency of enterprises is an important internal mechanism, that is, the big data comprehensive pilot zone promotes the high-quality development of manufacturing enterprises by improving the labor resource allocation efficiency, investment efficiency and green innovation efficiency. The high-quality development promotion effect of the big data comprehensive pilot zone is more pronounced in non-state-owned enterprises, high-tech enterprises, and regions with strong environmental regulations and high levels of financial technology development. The economic consequence analysis shows that the high-quality development of manufacturing enterprises can enhance organizational resilience, and the establishment of a big data comprehensive pilot zone strengthens the positive correlation between high-quality development of enterprises and organizational resilience.
赵超, 曾庆铎. 国家级大数据综合试验区如何影响制造业企业高质量发展:基于资源配置效率视角[J]. 《深圳大学学报》(人文社科版), 2024, 41(5): 71-83.
ZHAO Chao, ZENG Qing-duo. The Impact of National Big Data Comprehensive Pilot Zones on the High-quality Development of Manufacturing Enterprises: From the Perspective of Resource Allocation Efficiency. , 2024, 41(5): 71-83.
[1] Xue Y,Jiang C,Guo Y,et al.Corporate social responsibility and high-quality development:Do green innovation, envi-ronmental investment and corporate governance matter?[J].Emerging Markets Finance and Trade,2022,58(11):3191-3214. [2] Uras B R.Corporate financial structure, misallocation and total factor productivity[J].Journal of Banking & Fin-ance,2014,39:177-191. [3] 李佳霖,张倩肖,董嘉昌.金融发展、企业多元化战略与高质量发展[J].经济管理,2021,43(2):88-105. [4] 林志帆,龙小宁.社会资本能否支撑中国民营企业高质量发展?[J].管理世界,2021,37(10):56-73. [5] 王文涛,曹丹丹.互联网资本与民营经济高质量发展:基于企业创新驱动路径视角[J].统计研究,2020,37(3):72-84. [6] 许志勇,宋泽,朱继军,等.金融资产配置、内部控制与企业高质量发展[J].中国软科学,2022,(10):154-165. [7] 杨俊,李小明,黄守军.大数据、技术进步与经济增长——大数据作为生产要素的一个内生增长理论[J].经济研究,2022,57(4):103-119. [8] Mikalef P,Pappas I O,Krogstie J,et al.Big data analytics capabilities: A systematic literature review and research agenda[J].Information Systems and e-Business Managem-ent,2018,16(3):547-578. [9] Urbinati A,Bogers M,Chiesa V,et al.Creating and captu-ring value from Big Data: A multiple-case study analysis of provider companies[J].Technovation,2019,84:21-36. [10] 陈国青,任明,卫强,等.数智赋能:信息系统研究的新跃迁[J].管理世界,2022,38(1):180-196. [11] Zhang Y, Ran C.Effect of digital economy on air pollution in China? New evidence from the “National Big Data Comprehensive Pilot Area” policy[J].Economic Analysis and Policy,2023,79:986-1004. [12] Wei X, Jiang F, Yang L.Does digital dividend matter in China's green low-carbon development: Environmental impact assessment of the big data comprehensive pilot zones policy[J].Environmental Impact Assessment Revi-ew,2023,101:107143. [13] 宋华盛,卢历祺.大数据发展和企业劳动收入份额——来自“国家级大数据综合试验区”的证据[J].经济学动态,2024,(1):111-128. [14] 支宇鹏,卢潇潇.国家大数据综合试验区设立与城市创业活跃度——基于284个城市的经验证据[J].中国流通经济,2023,37(3):84-96. [15] 邱子迅,周亚虹.数字经济发展与地区全要素生产率 ——基于国家级大数据综合试验区的分析[J].财经研究,2021,47(7):4-17. [16] 陈加友. 国家大数据(贵州)综合试验区发展研究[J].贵州社会科学,2017,(12):149-155. [17] 李桥兴,杜可.国家级大数据综合试验区设立对区域数字经济发展影响效应评估[J].科技管理研究,2021,41(16):81-89. [18] Lyu Y, Xiao X, Zhang J.Does the digital economy enhance green total factor productivity in China? The evidence from a national big data comprehensive pilot zone[J].Structural Change and Economic Dynamics,2024, 69:183-196. [19] Wang W,Zhang H,Sun Z,et al.Can digital policy improve corporate sustainability?Empirical evidence from China's national comprehensive big data pilot zones[J].Telecom-munications Policy,2023,47(9):102617. [20] 尹夏楠,明华,耿建芳.高管薪酬激励对企业资源配置效率的影响研究——基于产权性质和行业异质性视角[J].中国软科学,2021,(S1):260-267. [21] 徐林,侯林岐,程广斌.国家级大数据综合试验区创新效应研究[J].科技进步与对策,2022,39(20):101-111. [22] Kovacova M, Segers C, Tumpach M, et al.Big data-driven smart manufacturing:Sustainable production pro-cesses,real-time sensor networks,and industrial value creation[J].Economics,Management and Financial Mark-ets,2020,15(1):54-60. [23] Glaeser E L, Kominers S D, Luca M, et al.Big data and big cities:The promises and limitations of improved me-asures of urban life[J].Economic Inquiry,2018,56(1):114-137. [24] Rennings K.Redefining innovation—eco-innovation re-search and the contribution from ecological economics[J].Ecological Economics,2000,32(2):319-332. [25] 石玉堂,王晓丹.大数据综合试验区设立能否驱动企业数字化转型?——基于准自然实验的实证研究[J/OL].科学学研究,https://doi.org/10.16192/j.cnki.1003-2053. 20230615.008,2024-05-11. [26] 王晗,何枭吟,许舜威.创新型城市试点对绿色创新效率的影响机制[J].中国人口·资源与环境,2022,32(4):105-114. [27] 牛志伟,许晨曦,武瑛.营商环境优化、人力资本效应与企业劳动生产率[J].管理世界,2023,39(2):83-100. [28] 江艇. 因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022,(5):100-120. [29] 武常岐,张昆贤,周欣雨,等.数字化转型、竞争战略选择与企业高质量发展——基于机器学习与文本分析的证据[J].经济管理,2022,44(4):5-22. [30] 倪婷婷,王跃堂.区域行政整合、要素市场化与企业资源配置效率[J].数量经济技术经济研究,2022,39(11):136-156. [31] Richardson S.Over-investment of free cash flow[J].Review of Accounting Studies,2006,11(2-3):159-189. [32] 刘畅,潘慧峰,李珮,等.数字化转型对制造业企业绿色创新效率的影响和机制研究[J].中国软科学,2023,(4):121-129. [33] Berrone P, Fosfuri A, Gelabert L, et al.Necessity as the mother of ‘green' inventions: Institutional pressures and environmental innovations[J].Strategic Management Jou-rnal,2013,34(8):891-909. [34] Beck T, Levine R, Levkov A.Big bad banks? The winners and losers from bank deregulation in the United States[J].Journal of Finance,2010,65(5):1637-1667. [35] Chetty R,Looney A,Kroft K.Salience and taxation: Theory and evidence[J].American Economic Review,2009,99(4):1145-1177. [36] 李虹,邹庆.环境规制、资源禀赋与城市产业转型研究——基于资源型城市与非资源型城市的对比分析[J].经济研究,2018,53(11):182-198. [37] 赵瑞瑞,张玉明,刘嘉惠.金融科技与企业投资行为研究——基于融资约束的影响机制[J].管理评论,2021,33(11):312-323. [38] 周炜,海伦贝尔·李,宗佳妮.企业战略变革影响组织韧性的效果与边界[J].科研管理,2024,45(3):105-112. [39] Ortiz De Mandojana N, Bansal P. The long-term benefits of organizational resilience through sustainable business practices[J].Strategic Management Journal,2016, 37(8):1615-1631.