|
|
Entitlement, Valuation and On-balance-sheet Recognition: Based on the Assetization of Enterprise Data |
WANG Xiao-long1,2 |
1. School of Education, Tianjin University, Tianjin, 300350; 2. School of Accounting, Wuxi Taihu University, Wuxi, Jiangsu, 214064 |
|
|
Abstract The assetization of enterprise data in China holds a strategic position in the process of Chinese-style modernization, becoming a key driver to enhance enterprise competitiveness and market status. Based on the theory of the digital economy and utilizing the database of the “Urban Statistical Yearbook” for 2024 in conjunction with the database of China’s big data asset exchanges, an analytical framework for the entitlement, valuation system, and accounting recognition of enterprise data assets was constructed. The study finds that: the construction of the enterprise data assetization system is the cornerstone of developing a “digital economy”; the property rights framework of “three rights separation” for data assets clarifies the rights of data resource holders, data processors and users, and data product operators, delineating the rights and responsibilities of different entities throughout the lifecycle of enterprise data assets; enterprise data assets select quantitative valuation methods or evaluative valuation methods adaptively according to different classification criteria and application scenarios; the recognition of enterprise data assets on the balance sheet in China has a practical foundation, with the framework system of the “ fourth financial report” divided into three parts: “Input Value Column”, “Business Value Column”, and “External Value Column”; empirical evidence shows that the assetization of enterprise data has a significant positive effect on regional economic growth using methods such as Tobit regression analysis, difference-in-differences, and robustness tests. The research conclusions provide a theoretical basis and practical methods for the management and optimal allocation of enterprise data assets, offering references for corporate strategic planning and policy formulation in the era of the digital economy.
|
Received: 05 September 2024
|
|
|
|
|
[1] 马治国,张楠.区块链赋能数据资产证券化及其法律治理[J].深圳大学学报(人文社会科学版),2023,40(3):114-124. [2] 胡亚茹,许宪春.企业数据资产价值的统计测度问题研究[J].统计研究,2022,39(9):3-18. [3] 李昆,赵雨婷,杨强.数字化转型对重污染型企业环境绩效的影响研究:基于数据资产化视角[J].经济经纬,2024,41(3):108-120. [4] 陈荣达,林祺,金骋路,等.数据资产估值定价与新质生产力发展:演进逻辑与主要挑战[J].财贸经济,2024,(8):33-51. [5] 丁玟文,庞智强.数据资产的分类与估值方法[J].统计与决策,2024,(15):34-39. [6] 刘悦欣,夏杰长.数据资产价值创造、估值挑战与应对策略[J].江西社会科学,2022,42(3):76-86. [7] 杨飞虎,王志高,余炳文.数据要素、数据财政与经济增长[J].当代财经,2022,(11):40-52. [8] Veldkamp L.Valuing Data as an Asset[J].Review of Fina-nce,2023,27(5):1545-1562. [9] Kassa S G,Cisa C.IT Asset Valuation,Risk Assessment and Control Implementation Model[J].ISACA Journal,2017,3(1):1-9. [10] 谭明军. 论数据资产的概念发展与理论框架[J].财会月刊,2021,(10):87-93. [11] 王柯元,于雷,颜拥,等.基于区块链的电力数据资产化及交易系统设计[J].东北大学学报(自然科学版),2021,42(2):166-173. [12] 季良玉. 数据权属如何界定:一个讨论[J].财会通讯,2023,(14):10-14. [13] 赵超,曾庆铎.国家级大数据综合试验区如何影响制造业企业高质量发展:基于资源配置效率视角[J].深圳大学学报(人文社会科学版),2024,41(5):71-83. [14] Kim O,Park J,Park C,et al.Data Asset Valuation Model Review[J].The Journal of Bigdata,2021,6(1):153-160. [15] 苑秀娥,尚静静.价值创造视角下互联网企业数据资产估值研究[J].会计之友,2024,(6):59-67. [16] 张俊瑞,危雁麟.数据资产会计:现状、规制与展望[J].财会月刊,2023,44(12):3-11. [17] 黄倩倩,王建冬.数字金融背景下探索数据要素金融属性的政策路径研究[J].价格理论与实践,2024,(1):67-71+213. [18] 王俊清,程家旗.员工激活与基于第四张表的管理会计驱动价值创造实践[J].商业会计,2021,(5):87-90. [19] 李秉祥,李真,茹雨青.数字经济背景下物流企业大数据资产的估值研究——以圆通速递为例[J].财会通讯,2024,(2):84-89. [20] 罗玫,李金璞,汤珂.企业数据资产化:会计确认与价值评估[J].清华大学学报(哲学社会科学版),2023,38(5):195-209+226. [21] Tsai C F, Lu Y H, Yen D C.Determinants of Intangible Assets Value:The Data Mining Approach[J].Knowledge-Based Systems,2012,(31):67-77. [22] Yamaguchi T.Intangible Asset Valuation Model Using Panel Data[J].Asia-Pacific Financial Markets,2014,21(2):175-191. [23] Kok N, Koponen E L, Martínez-Barbosa C A.Big Data in Real Estate?From Manual Appraisal to Automated Valuation[J].The Journal of Portfolio Management,2017,43(6):202-211. [24] 曾雪云,叶滨.移动通信数据资产化应用实践与入表核算路径设计[J].财务与会计,2023,(24):46-48. [25] 海尔集团. 管理会计创新与探索:第四张表——共赢增值表[J].中国总会计师,2018,(7):26-27. [26] 高华,姜超凡.应用场景视角下的数据资产价值评估[J].财会月刊,2022,(17):99-104. [27] 陈伟忠,马永强,阳丹.数字化转型与企业ESG表现——基于生产安全事故的视角[J].当代财经,2024,(8):140-152. [28] 郑丁灏. 中国数据交易所政策变迁、功能定位与规范配置[J].科技进步与对策,2024,41(13):113-121. [29] 王静云,吕本富.建设全国统一数据要素大市场的关键因素分析及政策建议[J].管理现代化,2022,42(6):146-152. |
|
|
|